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Abstract

This paper deals with the modeling of a plasma in the quasineutral limit using the two-fluid Euler–Poisson system. In
this limit, explicit numerical schemes suffer from severe numerical constraints related to the small Debye length and large
plasma frequency. Here, we propose an implicit scheme which reduces to a scheme for the quasineutral Euler model in the
quasineutral limit. Such a property is referred to as ‘‘asymptotic preservation’’. One of the distinctive features of this
scheme is that it has a comparable numerical cost to that of an explicit scheme: simply the Poisson equation is replaced
by a different (but formally equivalent) elliptic problem. We present numerical simulations for two different one-dimen-
sional test-cases. They confirm the expected stability of the scheme in the quasineutral limit. They also show that this
scheme has some accuracy problems in the limit of small electron to ion mass ratio in reproducing the correct electron
velocity. But this problem is already present in the results of the classical algorithm. Numerical simulations are also per-
formed for a two-dimensional problem of a plasma expansion in vacuum between two electrodes.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, which has been summarized in the short note [14], we are interested in numerical algorithms
to solve plasma fluid models. For the sake of simplicity, we assume that the plasma consists of electrons and
one ion species and the model consists of the isentropic Euler equations for each species coupled with the Pois-
son equation. The methodology can actually be extended to other types of fluid models, such as full Euler
equations for both species, of Euler equations for the ions and drift-diffusion equations (supplemented by
an energy equation) for the electrons like in [9,17].
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There are two important physical length and time scales associated with this model (see e.g. [5,43]): the
Debye length and the electron plasma period. The Debye length measures the typical length scale of charge
imbalances in the plasma, and the electron plasma period is the period of the oscillations which take place
(due to the electrostatic restoring force) when such charge imbalances occur. We are interested in situations
where both parameters can be very small compared with typical macroscopic length and time scales. In this
so-called quasineutral regime, the local electric charge vanishes everywhere. However, simultaneously, the
electron plasma period becomes very small as well, so that when charge imbalances accidentally occur (as a
numerical artifact for instance), very high frequency plasma oscillations are triggered. When a standard expli-
cit scheme is used, these micro-scale phenomena must be resolved. Hence, the space and time steps must be
smaller than the Debye length and electron plasma period otherwise a numerical instability is generated.
The satisfaction of these constraints requires huge computational resources which make the use of explicit
methods almost impracticable.

The search for schemes free of such constraints has been the subject of a vast literature. A number of works
deal with particle models (instead of fluid models). Basically, two kinds of implicit methods have been pro-
posed for Particle-in-Cell (PIC) simulations: the direct implicit method [8,45] and the implicit moment method
[50,51]. Both method have then been coupled with the Maxwell equations ([3,35,44] for the direct implicit
method [52,53,73] for the implicit moment method and [31,32] for the use of the Darwin approximation of
the Maxwell system). For collisional kinetic models, or hybrid (electron) fluid–(ion) kinetic models, we can
refer to [57,58]. There has been an intense literature on this subject and it is virtually impossible to cite it
all. These methods have proved extremely efficient in number of situations but there are still regions where
short time steps must be used (see e.g. the recent discussion in [30]). Sophisticated numerical algorithms have
been developed to overcome this problem, such as multiscale simulations [29], or recently, Discrete Event Sim-
ulation techniques [40], but their implementation requires specific developments. So the improvement of clas-
sical time-stepping strategies, if possible, would offer attractive perspectives.

Our work is in this direction but (so far) deals with fluid models. For fluid models the literature is compar-
atively less abundant. We can refer to the pioneering work [27], and more recently to [7,9,62,64]. When the
fluid models are drift-diffusion models, implicit strategies have been proposed in [71,72,46].

To cancel the fast scales associated with electron plasma frequency, quasineutral models have been very
frequently considered [25]. Most frequently, hybrid (electron) fluid–(ion) kinetic quasineutral models have
been considered [36,48,59] but other cases have also been investigated [39,47]. Recently, two-fluid quasineutral
models have been studied [13,15,18–21]. Such models are formally obtained by letting the ratio of the Debye
length to the macroscopic length scale and accordingly that of the electron plasma period to the macroscopic
time scale to zero.

However, in situations where quasineutral and non-quasineutral regions coexist, a specific treatment is
needed to connect the quasineutral model with a non-quasineutral model across the interface. Such situations
arise in sheath problems [28,34,65–68], ion extraction problems [37], plasma diode modeling [69], arc forma-
tion on satellite solar cells [2,4,6,24] and potentially many other situations where edge plasmas occur, like the
divertor region of a tokamak [42].

In such problems, one has often to deal with a dynamic interface the tracking of which gives rise to a com-
plex numerical problem. Various algorithms have been proposed for interface dynamics, such as Front Track-
ing [70], Volume of Fluid methods [78], Level Set methods (see e.g. [55,63]) or Diffuse Interface Methods (see
e.g. [1,61]). Specific algorithms have been developed in the context of PIC simulations of plasmas [75]. All
these methods require specific developments. Additionally, the interface dynamics is not a priori known,
and must either be derived from an asymptotic analysis like in [19,20], or [34], or must be inferred from phys-
ical considerations. In both cases, great care is required to ensure that the proper dynamics is implemented.
Another problem is related to the fact that the quasineutral to non-quasineutral transition may not be a sharp
transition, but rather a fairly diffuse one, and its approximation into a sharp interface may actually lead to
some unphysical behavior.

For these reasons, it is highly desirable to develop numerical methods which automatically shift from a
quasineutral to a non-quasineutral model across the transition region when such a transition is encountered.
In this work, we show that the two-fluid Euler–Poisson model can be discretized by means of an implicit
scheme such that, in the quasineutral limit, a discretization of the quasineutral Euler model is recovered. Such
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a property is sometimes referred to as ‘‘asymptotic preservation’’ (in that the scheme preserves the asymptotic
limit) and the scheme then enjoys the so-called AP property (asymptotic preserving).1 Other approaches tar-
geting the same property have been previously published in the literature, such as [7,9].

Our strategy does not require any restrictive assumption on the solution of the problem and is valid in any
number of space dimensions. Additionally, in spite of being implicit, the scheme has the same computational
cost as the standard explicit strategy, the resolution of the Poisson equation being replaced by that of a dif-
ferent (but formally equivalent) elliptic equation, which is not more difficult to solve. This is, up to our knowl-
edge, the first time that this elliptic equation is introduced. In this paper, we report on numerical simulations in
one and two space dimensions which experimentally prove that the scheme performs well in the quasineutral
limit. In a forthcoming work by the same authors in collaboration with Liu, a linearized stability analysis of
the scheme is performed. It demonstrates that its stability region is independent of the Debye length and of the
electron plasma period.

To better introduce our strategy, we first consider the continuous model and show that the Poisson equa-
tion can be reformulated into an elliptic equation which does not degenerate when the Debye length and elec-
tron plasma period tend to zero (like the Poisson equation does), but instead leads to the equation for the
quasineutral potential. This is done in Section 2.

Then, in Section 3, we propose an implicit time-stepping strategy which allows to reproduce the derivation
of the reformulated elliptic equation for the potential in a discrete setting. Again, the reformulated equation
does not degenerate when the Debye length and electron plasma period tend to zero but instead leads to the
equation for the quasineutral potential. This indeed means that the scheme enjoys the (AP) property. An
important point is that we can formulate this time-stepping strategy in such a way that the (AP) scheme
has a comparable cost to that of an explicit discretization.

The standard time-stepping strategy (following [27]; see also [64]) already involves implicit electric force
terms in the momentum balance equations. Our implicit time-stepping strategy requires that, additionally
to the electric force terms, the mass flux terms in the mass conservation equations be taken implicitly. By con-
trast, the momentum flux terms (both the drift and pressure ones) can be discretized explicitly. By taking these
terms explicitly, we may formulate the algorithm in such a way that the (AP) scheme has a comparable cost to
that of the standard time-stepping strategy. Time-implicit algorithms for the compressible Euler equations
have been considered in many references, see e.g. [10,76,77].

With some of the hydrodynamic fluxes discretized explicitly, the stability domain of the scheme is still
limited by the CFL number of the hydrodynamics. This can be quite detrimental for electrons because of
their very small mass. However, the time-stepping strategy can be extended in order to waive the limita-
tion due to the very small electron mass. This improvement will be reported in future work. The small
electron mass problem is somewhat similar to the low Mach number limit in compressible flows (see
e.g. [41]).

Finally, space-discretization strategies are discussed. Since we are interested in stiff problems where the
plasma density drops to virtually zero, we have considered a modified Lax–Friedrichs scheme, which is very
robust. Obviously, this is a very diffusive scheme and the control of numerical diffusion requires further
improvements. There is a huge variety of hydrodynamic solvers which require a systematic testing for deter-
mining the best (AP) coupled strategy with the Poisson equation. As a preliminary step, we have investigated
two other solvers, the Lax–Wendroff scheme and a Riemann solver based scheme, the Polynomial scheme
[15,22]. They both perform well in smooth regions (as can be seen in Section 4) but develop instabilities at
the plasma–vacuum transition. Still, the results with the modified Lax–Friedrichs scheme already seem prom-
ising, as Section 4 will show.

Indeed, Section 4 is devoted to the discussion of the numerical results. First, comparisons between the clas-
sical and (AP) schemes are provided in a one-dimensional geometry. The first test problem consists of a peri-
odic perturbation of a quasineutral uniform stationary plasma with non-zero current. For this test-case, an
exact solution of the linearized Euler system about the considered steady state is analytically known. For small
perturbations, the solutions of the linearized and nonlinear problems are believed to be close. The classical and
1 This terminology has been introduced by S. Jin for relaxation limits of kinetic systems [38].
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asymptotic preserving scheme are compared. We numerically observe that the (AP) scheme remains stable
while the classical scheme develops instabilities for time steps greater than the electron plasma period.

The second configuration is a one-dimensional physical application linked to high-current plasma diodes
[18–21,69] and arcing on satellite solar cells [4,6,15,24]. This test-case describes the expansion of a quasineu-
tral plasma in the vacuum separating two electrodes. The high density quasineutral plasma is emitted at the
cathode and undergoes a thermal expansion. At the plasma–vacuum interface, electron emission occurs in
the Child–Langmuir regime (see e.g. [5,16,23]). This test-case is particularly well adapted to the (AP)
scheme, since a transition between a quasineutral region (the plasma) to a non-quasineutral one (the gap
where the electrons are accelerated) occurs. We observe that the (AP) scheme remains stable in all the cases
while the classical scheme develops a non-physical behavior for time steps greater than the plasma electron
period.

Finally a two-dimensional simulation is presented. The physical problem is again that of the plasma expan-
sion between two electrodes. The results show that the scheme performs well in a multi-dimensional setting,
and confirms its stability for large time and space steps (compared to the Debye length and the electron plasma
period). Such a simulation would be virtually impossible to achieve with an explicit scheme, and would require
considerable computer resources.

2. The two-fluid Euler–Poisson system and its quasineutral limit

In this section, we present the two-fluid Euler–Poisson system and its quasineutral limit. We review the fun-
damental time and length scales (the electron plasma period and the Debye length). We show that the Poisson
equation can be reformulated into an elliptic equation which does not degenerate in the quasineutral limit and,
in this limit, provides the equation for the quasineutral potential.

2.1. The two-fluid isentropic Euler–Poisson system

We consider a plasma constituted of electrons and one positively charged ion species. We denote by mi,e the
ion and electron masses, by ni,e their densities and by ui,e their mean velocities. For simplicity, the ions are
supposed singly charged and both the electron and ion pressure laws, pi,e, are assumed isentropic, i.e.
pi;e ¼ ci;en

ci;e
i;e , where ci,e > 1 are the ratio of specific heats and ci,e > 0 are given positive constants. We denote

by / the electric potential.
We suppose that the position variable x belongs to the physical domain X � Rd , d = 1, 2, or 3. We shall

discard the description of the boundary conditions (but some of them are treated in the numerical examples
below). The two-fluid Euler–Poisson system in the domain X is written
otni þr � ðniuiÞ ¼ 0; ð1Þ
mi½otðniuiÞ þ r � ðniui � uiÞ� þ rpiðniÞ ¼ �enir/; ð2Þ
otne þr � ðneueÞ ¼ 0; ð3Þ
me½otðneueÞ þ r � ðneue � ueÞ� þ rpeðneÞ ¼ ener/; ð4Þ
where e is the positive elementary charge and where the electric field E = �$/ is given by the Poisson equation
�e0D/ ¼ eðni � neÞ; ð5Þ

with e0 the vacuum permittivity.

Let us point out that our strategy can easily be extended to more complex models. We can consider full
Euler systems with energy equations, multiple ion species (including negatively charged ions). Similarly, we
could consider that some or all species are rather modeled by drift-diffusion equations (possibly supplemented
by energy equations). Finally, the Maxwell equations can be substituted to the Poisson equation as well. All
these points will be developed in future work. The consideration of kinetic models instead of fluid ones is
under investigation.

The two important physical scales which characterize this model (see [5,43]) are the Debye length kD and
the electron plasma frequency xp given by
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kD ¼
e0kBT 0

e2n0

� �1=2

; xp ¼
n0e2

e0me

� �1=2

;

where kB is the Boltzmann constant, n0 is the density scale (n0 � ni � ne), T0 is the temperature scale
(kBT0 � pi(n0)/n0 � pe(n0)/n0) and me is the electron mass. The Debye length measures the typical length scale
of charge imbalances in the plasma, and the electron plasma period is the period of the oscillations which take
place (due to the electrostatic restoring force) when such charge imbalances occur. We note that an ion plasma
frequency can be defined (changing me into mi) but, due to the large ion to electron mass ratio, this parameter
is much smaller than xp. The electron plasma period is defined by sp = 1/xp.

We are interested in the very frequent situation where both the Debye length and the electron plasma period
are very small compared with typical macroscopic length and time scales. In this so-called quasineutral regime,
the local electric charge vanishes everywhere. However, simultaneously, the electron plasma period becomes
very small as well, so that when charge imbalances accidentally occur (as a numerical artifact for instance),
very high frequency plasma oscillations are triggered.

When a standard explicit scheme is used, these micro-scale phenomena must be resolved. Hence, the space
and time steps Dx and Dt, must satisfy
Dx 6 kD and xpDt 6 1;
otherwise a numerical instability is generated. These constraints are particularly penalizing in quasineutral re-
gimes and simulations require huge computational resources. For this reason, the quasineutral model is usu-
ally preferred.

To introduce the quasineutral model, it is convenient to first perform a scaling of the Euler–Poisson prob-
lem. The scaled variables are given by �x ¼ x=L and �t ¼ tu0=L where L is the typical length of the problem and
u0 is the ion velocity scale (typically u0 = (kBT0/mi)

1/2 = (pi(n0)/(n0mi))
1/2, where we recall that n0 and T0 are

the density and temperature scales). The scaled unknowns are defined by �ni ¼ ni=n0, �ne ¼ ne=n0, �ui ¼ ui=u0,
�ue ¼ ue=u0, �/ ¼ e/=ðmiu2

0Þ and �pi;e ¼ pi;e=ðmin0u2
0Þ. Inserting this scaling into (1)–(4) and omitting the bars

gives rise to the following scaled two-fluid Euler–Poisson model:
otni þr � ðniuiÞ ¼ 0; ð6Þ
otðniuiÞ þ rfi ¼ �nir/; ð7Þ
otne þr � ðneueÞ ¼ 0; ð8Þ
otðneueÞ þ rfe ¼ ner/=e; ð9Þ
� k2D/ ¼ ni � ne; ð10Þ
where fi and fe are the scaled momentum fluxes:
fi ¼ niui � ui þ piðniÞId and f e ¼ neue � ue þ
1

e
peðneÞId; ð11Þ
with � = me/mi being the particle mass ratio and the symbols � and Id respectively denoting the tensor product
of vectors and the Identity tensor. The terms $ fi, $ fe denote the divergence of the tensors fe and fi.

The mathematical theory of the Euler–Poisson system has been investigated in [12,56] for the isothermal
case and in [49] for the isentropic case.

The parameter k is the scaled Debye length given by k = kD/L. Note that the scaled plasma frequency is
given by x ¼ xpL=u0 ¼ 1=ð

ffiffi
�
p

kÞ. In what follows, we shall keep e an order O(1) quantity and investigate
the limit k! 0. However, the strategy can be extended when both parameters k and e tend to zero. This will
be reported in future work. Note that the limit e! 0 alone is similar to the so-called low Mach number limit
of hydrodynamics (see e.g. [41]).

2.2. The quasineutral model

The formal quasineutral limit on the two-fluid Euler–Poisson system k! 0 has been studied in a series of
works [20,15]. Here, we recall some results included in these works.
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Formally passing to the limit k! 0 in the two-fluid Euler–Poisson problem merely amounts to replac-
ing Eq. (10) by the quasineutrality constraint ni = ne. The Poisson equation is lost, while the electrostatic
potential becomes the Lagrange multiplier of this constraint. Assuming that quasineutrality is satisfied ini-
tially ni(t = 0) = ne(t = 0) (the possible occurrence of non-quasineutral initial layers being discarded in
these considerations), the constraint ni = ne can be expressed by taking the difference of the mass conser-
vation equations (6), (8) and leads to the divergence-free constraint for the scaled electric current
j = niui � neue:
r � j ¼ r � ðniui � neueÞ ¼ 0: ð12Þ
Now, taking the divergence of Eqs. (7) and (9), subtracting them and inserting into (12), we obtain the follow-
ing elliptic equation for the quasineutral potential /:
�r � ni þ
ne

�

� �
r/

� �
¼ r2 : ðfi � feÞ;
where the symbols $ 2 and respectively denote the tensor of second order derivatives and the contracted prod-
uct of two tensors.

In summary, the quasineutral model consists of the following system:
otni þr � ðniuiÞ ¼ 0; ð13Þ
otðniuiÞ þ rfi ¼ �nir/; ð14Þ
otne þr � ðneueÞ ¼ 0; ð15Þ
otðneueÞ þ rfe ¼ ner/=e; ð16Þ

� r � ni þ
ne

�

� �
r/

� �
¼ r2 : ðfi � feÞ: ð17Þ
Again, this model is formally equivalent with taking the quasineutrality limit ni = ne of the Euler–Poisson
problem, provided that quasineutrality is satisfied initially.

Quasineutral limits have been rigorously studied in [11,74,67] for simplified systems.
We first note that the two-fluid Euler–Poisson system (6)–(10) and the quasineutral Euler system (13)–(17)

only differ by the elliptic equations for the potential / namely the Poisson equation (10) for the former, and
the quasineutral equation (17) for the latter. The second remark is that these two equations are quite different,
explaining why the two regimes have so different properties. The third remark is that there is no direct way of
guessing Eq. (17) from the quasineutral limit of (10). However, if we wish to attempt to find a unified numer-
ical strategy for both regimes, we need to find an equation which embeds both (10) and (17). In the next sec-
tion we present a way of unifying these two different equations.

2.3. A reformulation of the Poisson equation

Here we return to the Euler–Poisson system and provide a formally equivalent formulation to the Poisson
equation (10) which allows to recover the quasineutral equation (17) in the quasineutral limit. We show that
the Poisson equation is formally equivalent to the following:
ek2
o

2
ttð�D/Þ � r � �ni þ neð Þr/ð Þ ¼ �r2 : ðfi � feÞ; ð18Þ
provided that

(i) fi and fe are the fluxes of the Euler system (11),
(ii) initially, the Poisson equation is satisfied:
ð�k2D/� qÞt¼0 ¼ 0 and
d

dt
ð�k2D/� qÞ

� �
t¼0

¼ 0; ð19Þ
where q = ni � ne is the scaled charge density. This equation will be referred to as the ‘‘reformulated Poisson
equation’’.
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Indeed, taking the difference of (7) and (9), we obtain the evolution equation of the current density
j = niui � neue:
otjþrðfi � feÞ ¼ � ni þ
ne

e

� �
r/: ð20Þ
From the difference of (6) and (8), we also get the continuity equation
otqþr � j ¼ 0: ð21Þ
Then, taking the divergence of (20), the time derivative of (21), and combining these equations in order to
eliminate the current, we obtain
o2
ttq�r2 : ðfi � feÞ ¼ r � ni þ

ne

e

� �
r/

� �
: ð22Þ
We remark that (22) is a consequence of system (6)–(9) whatever the way the potential / is computed. Now,
using the scaled Poisson equation (10), we can eliminate q in (22) and get (18).

Conversely, assuming (18) and using (22), we deduce that
o2
ttð�k2D/Þ ¼ o2

ttq: ð23Þ
Then, the initial conditions (19) allow to integrate (23) twice and find the Poisson equation.
In the quasineutral limit k! 0, the reformulated Eq. (18) formally converges toward the quasineutral

potential equation (17). It does not degenerate into an algebraic equation like the Poisson equation does.
Then, the reformulated two-fluid Euler–Poisson system (6)–(9) and (18) seems to be the appropriate frame-
work to deal with problems which are partly or totally in the quasineutral regime.

The reformulated Poisson equation (18) is nothing but an harmonic oscillator equation for the
electric charge with an appropriate forcing term. Indeed, for constant ion and electron densities, this equation
yields
o
2
ttqþ x2 ni þ

ne

�

� �
q ¼ r2 : ðfi � feÞ: ð24Þ
The time discretization of this differential equation is a well-known subject. Indeed it is a common fact that an
explicit discretization of this equation is conditionally stable while an implicit one is unconditionally stable.
This is the idea behind the construction of the asymptotically stable scheme for the two-fluid Euler–Poisson
system. In physical variables, Eq. (24) gives
o
2
ttqþ x2

pi þ x2
pe

� �
q ¼ er2 :

1

mi

�f i �
1

me

�f e

� �
; ð25Þ
where xpi and xpe are respectively the local ion and electron plasma frequencies: x2
pi;e ¼

e2ni;e

e0mi;e
with ni,e the local

values of the ion and electron densities and where �f i and �f e are the momentum fluxes in physical variables,
given by �f i;e ¼ mi;eni;eui;e � ui;e þ pi;eðni;eÞId. In this form, it clearly appears that this harmonic oscillator equa-
tion monitors the plasma oscillations. Therefore, we have embedded the information about the plasma oscil-
lations within the elliptic equation for the potential.

In the next section, we show how we can use this reformulated Poisson equation to derive asymptotic pre-
serving time-stepping strategies for the Euler–Poisson problem.
3. An asymptotic preserving scheme for the two-fluid Euler–Poisson system

We first investigate time semi-discretizations of the two-fluid Euler–Poisson system. Indeed, the breakdown
of the standard time-stepping strategies in the quasineutral regime is primarily a time stability problem. We
defer the discussion of the space discretization to a forthcoming section.
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3.1. Time discretization for the two-fluid Euler–Poisson system

3.1.1. The classical time discretization

We denote by Dt the time step, and by gm an approximation of any function x ´ g(x, tm) with tm = mDt.
The classical time discretization of the two-fluid Euler–Poisson system (6)–(10) consists of an implicit compu-
tation of the electric potential and an explicit computation of the hydro-fluxes such that:
nmþ1
i;e � nm

i;e

Dt
þr � qm

i;e ¼ 0; ð26Þ

qmþ1
i � qm

i

Dt
þrf m

i ¼ �nmþ1
i r/mþ1; ð27Þ

qmþ1
e � qm

e

Dt
þrf m

e ¼
nmþ1

e

�
r/mþ1; ð28Þ

� k2D/mþ1 ¼ nmþ1
i � nmþ1

e ; ð29Þ
where qi,e = ni,eui,e are the scaled fluid momenta.
In spite of being implicit in the source term, this scheme can be advanced like an explicit method. Indeed,

assuming quantities known at time tm, the densities are computed at time tm+1 using (26). Then (29) gives the
potential /m+1 and finally the momentum equations (27) and (28) are updated.

Like in the continuous case, we can derive a reformulation of the Poisson equation as follows (provided the
Poisson equation is satisfied at time steps m = 0 and m = 1):
�ek2 ðD/mþ1 � 2D/m þ D/m�1Þ
Dt2

�r � ð�nm
i þ nm

e Þr/m� �
¼ �r2 : ðf m�1

i � f m�1
e Þ: ð30Þ
We remark that (30) is a time-explicit discretization of the reformulated Poisson equation (18). This scheme is
known to be stable under the condition xDt 6 1 (where we recall that x = (k2e)�1 is the scaled plasma fre-
quency) (see e.g. [27]). We do not prove (30) since the proof is similar to that of the corresponding formula
for the (AP) scheme below.

3.1.2. An asymptotic preserving strategy

We now propose the following time-stepping strategy, which uses implicit mass fluxes but explicit momen-
tum fluxes and implicit source terms:
nmþ1
i;e � nm

i;e

Dt
þr � qmþ1

i;e ¼ 0; ð31Þ

qmþ1
i � qm

i

Dt
þrf m

i ¼ �nm
i r/mþ1; ð32Þ

qmþ1
e � qm

e

Dt
þrf m

e ¼
nm

e

�
r/mþ1; ð33Þ

� k2D/mþ1 ¼ nmþ1
i � nmþ1

e : ð34Þ
Here, the reformulation of the Poisson equation (which again is formally equivalent to the original Poisson
equation provided the Poisson equation is satisfied at time steps m = 0 and m = 1) is as follows:
�ek2 ðD/mþ1 � 2D/m þ D/m�1Þ
Dt2

�r � ðð�nm
i þ nm

e Þr/mþ1Þ ¼ �r2 : ðf m
i � f m

e Þ: ð35Þ
Now (35) corresponds to a time-implicit discretization of the reformulated Poisson equation (18).
We stress that the scheme (31)–(33) and (35) has the same cost as an explicit method. Indeed, (35) can also

be written
� ek2

Dt2
D/mþ1 �r � ðð�nm

i þ nm
e Þr/mþ1Þ ¼ �r2 : ðf m

i � f m
e Þ þ

e
Dt2
ð2qm � qm�1Þ; ð36Þ
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where qm ¼ nm
i � nm

e is the time discretization of the charge density. Eq. (36) appears as an elliptic problem
which allows to compute /m+1 provided that all quantities up to time step m are known. Then (32) and
(33) allow to compute qmþ1

i and qmþ1
e in terms of known data and finally the densities are updated with (31).

The uniform stability property of this scheme for the linearized system is proved in a forthcoming article by
the same authors in collaboration with Liu. More precisely, it is proven that its stability region is independent
of the small parameter k when k! 0. In the present work (see Section 4), this uniform stability is observed in
the fully nonlinear case for one and two-dimensional test problems. Therefore, for an explicit method like
numerical cost, a uniformly stable scheme for the Euler–Poisson system in the quasineutral limit is obtained.2

When k! 0, the scheme converges to a scheme for the quasineutral limit, as it should, and as is apparent from
(35).

At this point, a discussion of this method in view of the now classical direct implicit method [8,45] and
implicit moment method [50,51] for PIC simulations is in order. We can rewrite Eq. (36) as
2 In
zero.
�r � ðð1þ vmÞr/mþ1Þ ¼ Dt2

k2
r2 : ðf m

i � f m
e Þ þ

1

k2
ð2qmþ1 � qmÞ; ð37Þ

vm ¼ Dt2

ek2
ð�nm

i þ nm
e Þ; ð38Þ
where by analogy with the direct implicit method, we have introduced an ‘‘implicit susceptibility’’ vm. In the
direct implicit method, the implicit susceptibility is computed from the particle discretization. Both (38) and
the direct implicit expression of the susceptibility become much larger than unity when large time steps com-
pared to the plasma period are used. However, the right-hand side of (37) involves the momentum fluxes,
which do not appear in the direct implicit method and which makes it more similar, at this level, to the implicit
moment method. In the latter, the momentum flux is computed from the particle distribution. However, the
implicit moment method uses the electric field as the unknown for the field equations, by contrast to the pres-
ent case where the equations are solved for the electric potential. Therefore the present method constitutes an
alternative and has so far been developed in the fluid context. Its extension to kinetic models and particles
methods is under current scrutiny.

The method is not fully implicit in the treatment of the electric field source term since the expression ni,e$/
is approximated by nm

i;er/mþ1 at the right-hand sides of (32) and (33). A fully implicit treatment like e.g.
nmþ1

i;e r/mþ1 would make the susceptibility (38) depend on the densities at step m + 1 and would prevent the
reduction of the scheme to an explicit one. However, a higher level of implicitation can be performed without
requiring a fully implicit treatment. Further investigations are planned for future work but our first series of
tests seem to indicate that the partly implicit treatment of the source term is sufficient.

The present time-stepping strategy is only first order in time. The method can easily be extended to second
order time-stepping strategies. In Section 4, we shall present preliminary results with the Lax–Wendroff
scheme. The results show that the method performs well and is actually more accurate than the first order
time-stepping strategy in smooth regions. However, the method develops instabilities at the plasma–vacuum
transition, probably because of too small a numerical diffusion and further work is necessary to stabilize them.
Other second order time-stepping strategies can also be investigated such as central schemes [54].

To be complete, we give a few words about how (35) is obtained. We proceed like in the continuous case.
Eqs. (31)–(33) give respectively
qmþ1 � qm

Dt
þr � jmþ1 ¼ 0 ð39Þ
and
jmþ1 � jm

Dt
þrðf m

i � f m
e Þ ¼ �r � nm

i þ
nm

e

�

� �
r/mþ1

� �
: ð40Þ
a forthcoming work, we will present a variant of this scheme which is uniformly stable for both parameters k and e when they tend to
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Taking the discrete time derivative of (39), the divergence of (40) and combining the results gives
qmþ1 � 2qm þ qm�1

Dt2
�r2 : ðf m

i � f m
e Þ ¼ r � nm

i þ
nm

e

�

� �
r/mþ1

� �
: ð41Þ
Using Poisson’s equation to eliminate the charge density at the l.h.s. of (41), we obtain (35). Reciprocally,
starting from (35) and using that the Poisson equation is satisfied at time steps m = 0 and m = 1, we obtain
Poisson equation (34).

3.2. Full discretization of the reformulated two-fluid Euler–Poisson system

In this section we propose full discretizations of the time semi-discretized systems (26)–(29) and (31)–
(34). The space discretization uses the modified Lax–Friedrichs scheme [26,33]. Starting from this
discretization, equivalent schemes corresponding to the reformulated two-fluid Euler–Poisson discretization
are derived. The modified Lax–Friedrichs scheme is used in spite of its well-known large numerical
diffusion because it involves discrete mass fluxes which are simple analytic functions of the momentum
variables. This simplicity allows to pass from the discretization of the original Euler–Poisson system to
that of the reformulated Euler–Poisson system. Generalizations to Godunov type solvers is actually in
progress and we shall also present some preliminary results using Godunov based schemes in Section 4.
However, additional work must be undertaken in order to explore the huge variety of available numerical
schemes and to select the most suited ones to this new coupling methodology with the Poisson equation.

In this section we begin with the presentation of the classical discretization for the two-fluid
Euler–Poisson system. Then we present the asymptotic preserving scheme. The schemes are presented in
one space dimension for simplicity. The generalization to a multi-dimensional schemes is straightforward
and is omitted.

We consider the domain X = (0,1) and we discretize it with a uniform mesh of step Dx given by Dx = 1/N
where N is the number of cells. We set xk+1/2 = kDx for all k = 0, . . . ,N. Let Dt be the time step, for all m P 0

we set tm = mDt and we denote by ðUi;eÞmk ¼ ððni;eÞmk ; ðqi;eÞ
m
k Þ and by /m

k the approximations of ((ni,e)(x, t),

(qi,e)(x, t)) and /(x, t) for x 2 (xk�1/2,xk+1/2) and t 2 (tm, tm+1), with k = 1, . . . ,N and m P 0. First, we recall
the classical discretization.

3.2.1. Classical scheme for the two-fluid Euler–Poisson system

The full discretized equations associated to (26)–(29) using a modified Lax–Friedrichs solver is given by
ðniÞmþ1
k � ðniÞmk

Dt
þ 1

Dx
Qm

i ðU iÞmk ; ðU iÞmkþ1

� �
� Qm

i ðUiÞmk�1; ðU iÞmk
� �	 


¼ 0; ð42Þ

ðqiÞ
mþ1
k � ðqiÞ

m
k

Dt
þ

F m
i ðU iÞmk ; ðUiÞmkþ1

� �
� F m

i ðUiÞmk�1; ðUiÞmk
� �

Dx
¼ �ðniÞmþ1

k

/mþ1
kþ1 � /mþ1

k�1

2Dx
; ð43Þ
for ions and
ðneÞmþ1
k � ðneÞmk

Dt
þ 1

Dx
Qm

e ðU eÞmk ; ðUeÞmkþ1

� �
� Qm

e ðU eÞmk�1; ðUeÞmk
� �	 


¼ 0; ð44Þ

ðqeÞ
mþ1
k � ðqeÞ

m
k

Dt
þ

F m
e ððUeÞmk ; ðUeÞmkþ1Þ � F m

e ðUeÞmk�1; ðU eÞmk
� �

Dx
¼ ðneÞmþ1

k

�

/mþ1
kþ1 � /mþ1

k�1

2Dx
; ð45Þ
for electrons, where the numerical fluxes are the following for l = i or e:
Qm
l ðU g;U dÞ ¼

qg þ qd

2
þ Km

l ðng � ndÞ;

F m
l ðUg;UdÞ ¼

flðng; ugÞ þ flðnd ; udÞ
2

þ Km
l ðqg � qdÞ:

ð46Þ
The fluxes fl(n,u) are given by (11). The upwind constants Km
i and Km

e , are chosen in order to ensure the con-
sistency of the scheme (see [26]), we set:
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Km
l ¼

1

2
max jðulÞmk �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0lððnlÞmk Þ=�l

q
j; k ¼ 1; . . . ;N

� �
;

for l = i or e with �i = 1 and �e = �.
The discrete potential /mþ1

k is given by the classical discretized Poisson equation:
�k2Dapð/mþ1
k Þ :¼ �k2 /mþ1

kþ1 � 2/mþ1
k þ /mþ1

k�1

Dx2
¼ ðniÞmþ1

k � ðneÞmþ1
k : ð47Þ
To ensure stability of the Lax–Friedrichs scheme in the absence of coupling with the Poisson equation, the
time step must satisfy the CFL (Courant–Friedrichs–Levy) condition:
Dt 6
Dx

maxðKm
i ;K

m
e Þ
: ð48Þ
When coupled with Poisson equation, the time step must additionally satisfy the constraint xDt 6 1, as shown
in [27] (where we recall that x ¼ ðk

ffiffi
e
p
Þ�1 is the electron plasma frequency).

The modified Lax–Friedrichs solver differs from the classical Lax–Friedrichs solver by the choice of the
upwind constants. In the classical method, Km

i ¼ Km
e ¼ Dx=ð2DtÞ. Here, with two fluids, it is not possible to

stabilize the classical method. Indeed, it is well known that in order to ensure the stability of the classical
Lax–Friedrichs one must impose a CFL condition and an inverse CFL condition [26]. Here, for the stability
of both the ion and electron Euler systems, we must set
Ci;�
Dx
Ki
6 Dt 6 Ci;þ

Dx
Ki

and Ce;�
Dx
Ke
6 Dt 6 Ce;þ

Dx
Ke
;

where Ci,�, Ce,�, Ci,+ and Ce,+ are given positive constants. But, due to the small electron mass
Ke ¼ Oð1=

ffiffi
�
p
Þ 	 Ki ¼ Oð1Þ. Hence
Ce;þ
Dx
Ke

< Ci;�
Dx
Ki
;

and so it is not possible to find a time step satisfying both stability conditions.
Throughout the rest of the paper, the scheme (42)–(47) will be referred to as the classical scheme for the

two-fluid Euler–Poisson system (C-EP). The scheme is semi-implicit since the electric force terms are implicit,
but the resolution cost is the same as a fully explicit one, see Section 3.1.1. We note that taking explicit electric
force terms would lead to an unstable discretization [27].

3.2.2. The asymptotic preserving scheme

The full discretization associated to (31)–(34) is given by
ðniÞmþ1
k � ðniÞmk

Dt
þ 1

Dx
Qm

i ðU iÞmþ1=2
k ; ðU iÞmþ1=2

kþ1

� �
� Qm

i ðU iÞmþ1=2
k�1 ; ðU iÞmþ1=2

k

� �h i
¼ 0; ð49Þ

ðqiÞ
mþ1
k � ðqiÞ

m
k

Dt
þ

F m
i ðUiÞmk ; ðU iÞmkþ1

� �
� F m

i ðU iÞmk�1; ðU iÞmk
� �

Dx
¼ �ðniÞmk

/mþ1
kþ1 � /mþ1

k�1

2Dx
; ð50Þ

ðneÞmþ1
k � ðneÞmk

Dt
þ 1

Dx
Qm

e ðU eÞmþ1=2
k ; ðUeÞmþ1=2

kþ1

� �
� Qm

e ðU eÞmþ1=2
k�1 ; ðUeÞmþ1=2

k

� �h i
¼ 0; ð51Þ

ðqeÞ
mþ1
k � ðqeÞ

m
k

Dt
þ

F m
e ððU eÞmk ; ðU eÞmkþ1Þ � F m

e ðU eÞmk�1; ðUeÞmk
� �

Dx
¼ ðneÞmk

�

/mþ1
kþ1 � /mþ1

k�1

2Dx
; ð52Þ
with Umþ1=2
i;e ¼ ððni;eÞmk ; ðqi;eÞ

mþ1
k Þ and where the numerical fluxes Qm

i;e and F m
i;e are given by (46). The discrete po-

tential /mþ1
k is still given by the classical discretized Poisson equation (47).

Like in the continuous case, for all m P 2, the discretized Poisson equation (47) is equivalent to
� k2e
Dapð/mþ1

k Þ � 2Dapð/m
k Þ þ Dapð/m�1

k Þ
Dt2

� 1

2Dx
ð�ni þ neÞmkþ1

/mþ1
kþ2 � /mþ1

k

2Dx
� ð�ni þ neÞmk�1

/mþ1
k � /mþ1

k�2

2Dx

 !

¼ �
F m

kþ3=2 � F m
kþ1=2 � F m

k�1=2 þ F m
k�3=2

2Dx2
� �Dm

k � Dm�1
k

Dt
; ð53Þ
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provided that F m
kþ1=2 ¼ F m

i ðUiÞmk ; ðU iÞmkþ1

� �
� F m

e ðU eÞmk ; ðU eÞmkþ1

� �
, where
Dm
k ¼ �

Km
i

Dx
ðniÞmkþ1 � 2ðniÞmk þ ðniÞmk�1

� �
þ Km

e

Dx
ðneÞmkþ1 � 2ðneÞmk þ ðneÞmk�1

� �
; ð54Þ
and that the discrete Poisson equation (47) (with m + 1 replaced by m) is satisfied at steps m = 0 and m = 1.
To prove this formula, we first remark that (49) can be rewritten
ðniÞmþ1
k � ðniÞmk

Dt
þ ðqiÞ

mþ1
kþ1 � ðqiÞ

mþ1
k�1

2Dx
� Km

i

Dx
ðniÞmkþ1 � 2ðniÞmk þ ðniÞmk�1

� �
¼ 0:
The difference with the similar equation for electrons gives
qmþ1
k � qm

k

Dt
þ jmþ1

kþ1 � jmþ1
k�1

2Dx
þ Dm

k ¼ 0; ð55Þ
where we recall that q = ni � ne and j = niui � neue and where Dm
k is given by (54). The discrete time derivative

of (55) yields
qmþ1
k � 2qm

k þ qm�1
k

Dt2
þ 1

Dt
jmþ1

kþ1 � jmþ1
k�1

2Dx
� jm

kþ1 � jm
k�1

2Dx

� �
þ Dm

k � Dm�1
k

Dt
¼ 0: ð56Þ
From the momentum equations, we deduce
jmþ1
kþ1 � jm

kþ1

Dt
þ

F m
kþ3=2 � F m

kþ1=2

Dx
¼ �ððniÞmkþ1 þ

ðneÞmkþ1

�
Þ /mþ1

kþ2 � /mþ1
k

2Dx
:

Taking the discrete space derivative of this equation we obtain
1

2Dx
jmþ1

kþ1 � jm
kþ1

Dt
� jmþ1

k�1 � jm
k�1

Dt

� �
þ 1

2Dx

F m
kþ3=2 � F m

kþ1=2

Dx
�

F m
k�1=2 � F m

k�3=2

Dx

� �

¼ � 1

2Dx
ðniÞmkþ1 þ

ðneÞmkþ1

�

� �
/mþ1

kþ2 � /mþ1
k

2Dx

 
� ðniÞmk�1 þ

ðneÞmk�1

�

� �
/mþ1

k � /mþ1
k�2

2Dx

�
:

Then, we combine this equation with (55) in order to eliminate the current, this gives
qmþ1
k � 2qm

k þ qm�1
k

Dt2
þ Dm

k � Dm�1
k

Dt
�

F m
kþ3=2 � F m

kþ1=2 � F m
k�1=2 þ F m

k�3=2

2Dx2

¼ 1

2Dx
ðniÞmkþ1 þ

ðneÞmkþ1

�

� �
/mþ1

kþ2 � /mþ1
k

2Dx

 
� ðniÞmk�1 þ

ðneÞmk�1

�

� �
/mþ1

k � /mþ1
k�2

2Dx

�
:

This equation is just a consequence of the discretized two-fluid Euler system (49)–(52) Now, like in the con-
tinuous case, using this result, we deduce the equivalence between the discrete Poisson equation (47) and the
discrete reformulated Poisson equation (53) provided that (49)–(52) are satisfied and that the Poisson equation
is satisfied at the two initial time steps. This concludes the proof of (53).

Throughout the rest of this paper, the scheme (49)–(53) will be referred to as the asymptotic preserving
scheme for the two-fluid Euler–Poisson system (AP-EP). The first and second time iterations are performed
with the classical scheme (C-EP) defined by (42)–(47). We stress again that this scheme can be solved with
the cost of an explicit scheme and so, it induces no additional cost compared with the classical discretization
(C-EP). Furthermore, the scheme (AP-EP) is expected to be asymptotically stable in the quasineutral limit
since it provides an implicit discretization of the reformulated Poisson equation (18). This expected stability
behavior is confirmed both by the analytical study (which will be published in a forthcoming work by the same
authors in collaboration with Liu) and by the numerical results presented in the following section.

4. Numerical results: comparison between the classical and the asymptotic preserving schemes

In this section we perform numerical simulations in one space dimension for the two-fluid Euler–Poisson
system. We present two test-cases and we compare the classical scheme, C-EP, defined by (42)–(47) and the
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asymptotic preserving scheme, AP-EP, defined by (49)–(53). The first test-case is the perturbation of a uniform
quasineutral stationary solution to two-fluid Euler–Poisson system. The second test-case models the expansion
of a quasineutral plasma in the vacuum separating two electrodes.

4.1. Periodic perturbation of a stationary uniform quasineutral plasma

We consider the quasineutral uniform stationary solution W0 of the two-fluid Euler–Poisson system given
by W 0 ¼ ðn0

i ¼ 1; n0
e ¼ 1; q0

i ¼ 0; q0
e ¼ 1;E0 ¼ 0Þ where we recall that E = �ox/ is the electric field. The first

test-case is the perturbation of this steady state. To this aim, we perform a simulation on the domain (0, 1)
with periodic boundary conditions for the Euler systems and with homogeneous Dirichlet boundary condi-
tions for the Poisson equation. Furthermore we consider the following initial condition which is a perturba-
tion of W0:
Table
Summ

C-EP
AP-EP
niðx; 0Þ ¼ neðx; 0Þ ¼ 1; qiðx; 0Þ ¼ d cos 2px; qeðx; 0Þ ¼ 1þ d cos 2px;
where d = 10�2 is the perturbation amplitude. This test-case has already been studied in [13,15] where the solu-
tion of the linearized two-fluid Euler–Poisson system is given analytically. For small perturbations, this solu-
tion is close enough to the solution of the nonlinear system. We compare this analytical solution to the
numerical solution computed by the classical scheme (C-EP) defined by (42)–(47) and the asymptotic preserv-
ing scheme (AP-EP) defined by (49)–(53).

We select parameters issued from plasma arc physics (see e.g. [6,2,4]) such that ci = ce = 1, c = 5/3 and
� ¼ 10�4; k ¼ 10�4 i:e: x ¼ 1

k
ffiffi
�
p ¼ 106

� �
: ð57Þ
We initiate the AP-EP scheme with two iterations performed with the C-EP scheme following the conditions
of the equivalence between the Poisson and reformulated Poisson equation as emphasized in Section 3.2.2. We
summarize the conditions of the various simulations and the observed stability of the numerical solution in
Table 1.

We note that it is not possible to simulate the case Dt > x�1 and Dx < k. Indeed, when the space step Dx is
such that Dx < k, then the condition Dt < x�1 is necessarily satisfied thanks to the CFL condition (48). The
small inertia of the electrons implies jKej 	 jKij since Ke � Oð1=

ffiffi
�
p
Þ. This is sufficient to ensure that Dt < x�1.

In Figs. 1–3 we present the results obtained with the classical scheme C-EP and with the asymptotic pre-
serving scheme AP-EP. On these simulations, the time step and the space step satisfy Dx = k and Dt < x�1.
The presented quantities are the particle densities, the velocities and the electric potential. They are compared
to the analytical values obtained with the linearized two-fluid Euler–Poisson model. The results are given at
the scaled time t = 0.1. For both schemes the results are stable.

In Figs. 4–6 we present the same quantities when the space step does not respect anymore the condition
Dx 6 k while the time step still satisfies Dt < x�1. We observe that the schemes remain stable. It appears, com-
paring Figs. 2 and 11, that there is a difference with the analytical solution in the computation of the electron
velocity amplitude and phase. This difference can be imputed to the bad consistency of the scheme for the elec-
tron velocity equation due to the mass ratio stiffness as � = 10�4
 1. Indeed, when � increases this lack of
precision decreases as we can see in Fig. 7.

In Figs. 8–10 we present the results obtained with the classical scheme C-EP when none of the conditions
Dx 6 k and Dt < x�1 are satisfied. We note that after a very short time t = 2 · 10�4, the solution diverges for
all variables. Then, the scheme C-EP is unstable for Dt > x�1.
1
ary of the conditions of the various simulations and observed stability of the numerical solution

Dx = k, Dt < x�1 Dx > k, Dt < x�1 Dx > k, Dt > x�1

Figs. 1–3 – Stab. Figs. 4–6 – Stab. Figs. 8–10 – Unstab.
Figs. 1–3 – Stab. Figs. 4–6 – Stab. Figs. 11–13 – Stab.
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Fig. 1. Periodic perturbation test-case with Dx = k and Dt < x�1, k = 10�4, � = 10�4, x = 106. Ion density (left) and electron density
(right): the classical scheme C-EP (dashed line) and the asymptotic preserving scheme AP-EP (dotted line) are compared to the analytical
solution of the linearized two-fluid Euler–Poisson model (solid line) at the scaled time t = 0.1. All curves are identical.
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Fig. 2. Periodic perturbation test-case with Dx = k and Dt < x�1, k = 10�4, � = 10�4, x = 106. Ion velocity (left) and electron velocity
(right): the classical scheme C-EP (dashed line) and the asymptotic preserving scheme AP-EP (dotted line) are compared to the analytical
solution of the linearized two-fluid Euler–Poisson model (solid line) at the scaled time t = 0.1. On the right the C-EP and AP-EP curves are
identical.

0 0.2 0.4 0.6 0.8 1
–0.01

–0.005

0

0.005

0.01

E
le

ct
ri

c 
po

te
nt

ia
l

x

C-EP scheme

AP-EP scheme

Analytical sol.

Fig. 3. Periodic perturbation test-case with Dx = k and Dt < x�1, k = 10�4, � = 10�4, x = 106. Electric potential: the classical scheme
C-EP (dashed line) and the asymptotic preserving scheme AP-EP (dotted line) are compared to the analytical solution of the linearized
two-fluid Euler–Poisson model (solid line) at the scaled time t = 0.1.
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In Figs. 11–13 we compare the results obtained with the asymptotic preserving scheme AP-EP to the lin-
earized analytical solution in the same condition i.e. when none of the conditions Dx 6 k and Dt < x�1 are
satisfied. We observe that the scheme is stable. The approximation for the electron velocity still suffers from
a lack of precision mostly in the phase velocity.
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Finally, in Fig. 14, we present results obtained with other solvers than Lax–Friedrichs scheme. We use the
Lax–Wendroff scheme which is an order two scheme (see [33]) and the polynomial scheme which is a Riemann
type solver (see [22,15]). They both give stable results when none of the conditions Dx 6 k and Dt < x�1 are
satisfied. Note that the error on the electron velocity is smaller for the order two Lax–Wendroff scheme.
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4.2. One-dimensional plasma expansion test-case

The second test-case we consider is that of a one-dimensional quasineutral plasma expansion in the vacuum
separating two electrodes. At the beginning of the process, the domain is devoid of plasma. Then we set
ni(x, t = 0) = ne(x, t = 0) = 0 for all x 2 (0, 1). The plasma is injected at the cathode x = 0, which is modeled
by boundary conditions for two-fluid Euler system given as follows: ni(x = 0, t) = ne(x = 0, t) = 1 and
ui(x = 0, t) = ue(x = 0, t) = 1, for all t P 0. Furthermore we set the following boundary conditions for the elec-
tric potential: /(x = 0, t) = 0 and /(x = 1, t) = /A. We select parameters issued from plasma arc physics (see
e.g. [2,4,6]) such that ci = ce = 1, c = 5/3, � = 10�4, k = 10�4 and /A = 102. We recall that these parameters
yield x = 106.

In Figs. 15–17, the ion and electron densities and velocities as well as the electric potential are displayed.
The results are obtained with the classical and asymptotic preserving schemes C-EP and AP-EP at the scaled
time t = 0.09. We simultaneously present the results obtained when Dx = k and Dt < x�1 and when Dx > k
and Dt > x�1.

When Dx = k, and Dt < x�1, the results obtained with the different schemes are identical. When Dx > k and
Dt > x�1, the numerical results show clearly the instability of the classical scheme C-PE whereas the asymp-
totic preserving scheme AP-EP remains stable. We note that the AP-EP scheme suffers from a lack of precision
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due to the use of a Lax–Friedrichs solver which is known to be very diffusive. The adaptation of the AP-EP
method to Godunov type solver and (or) second order central solvers appears to be a necessity and is a work
in progress.
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4.3. Two-dimensional results for plasma expansion

We consider a square domain X = (0, 1) · (0,4) and we denote by C its boundary. At the beginning of the
simulation the domain is devoid of plasma. Then,
niðt ¼ 0Þ ¼ neðt ¼ 0Þ ¼ 0:
We inject a quasineutral plasma on a part of C, such that:
ðniÞjCinj
¼ ðneÞjCinj

¼ exp � y � 2

0:05

� �2
" #

; ð58Þ

ðuiÞjCinj
¼ ðueÞjCinj

¼ 1; ð59Þ
where Cinj = {(x,y) 2 C,x = 0,y 2 [1.8,2.2]}.
The boundary conditions for the electric potential are the following:
/ð0; y; tÞ ¼ 0; /ð1; y; tÞ ¼ 100 and oy/ðx; 0; tÞ ¼ oy/ðx; 4; tÞ ¼ 0;
for all y 2 (0,4), all x 2 (0,1) and all t > 0.
Like in the one-dimensional test-cases the pressure laws are defined by ci = ce = 1 and ci = ce = 5/3 and the

dimensionless parameters are given by k = 10�4 and � = 10�4. This gives a scaled plasma frequency x = 106.
Finally, the mesh is Cartesian with space steps Dx = 1/100 and Dy = 1/100.

The reformulated Poisson equation is implemented using a SPARSE matrix data structure compressed by
row storage in order to minimize the memory and computation cost. From the open source library SPAR-
SKIT [60], an iterative algorithm PGMRES preconditioned by an ILUT method (incomplete factorization
LU with threshold and fill-in strategy) is used for the resolution of the system. Using an iterative method
reduces the computational cost of the method as the final iterate of the previous time step can be used as
the initial estimate for the next time step. Moreover it is not necessary to update the preconditioner at each
time step.

The results are given in Figs. 18–23. Globally, they show that the scheme performs well in 2D, and confirms
its stability for large time and space steps (compared to the Debye length and the electron plasma period). This
kind of simulation would be extremely difficult to achieve with an explicit scheme, and would require consid-
erable computer resources. However, we must notice that the physical validity of the simulation results
depends on the accuracy of each fluid variables and in particular of the electron fluid velocity. We have seen
that in one-dimensional simulations (see Section 4.1 and Figs. 5 and 7), this electron fluid velocity is not well
described. It is important to note that this problem is already present in the classical scheme. Then it appears
necessary to develop asymptotically stable schemes in both the quasineutral and small electron to ion mass
ratio limits. This is work in progress (see Section 4.1 and Fig. 14).

In Fig. 18, we represent the ion and electron densities in log-scale at times t = 0.005, t = 0.02 and t = 0.04.
The times t = 0.005, t = 0.02 are picked during the expansion phase of the plasma before it reaches the anode.
The time t = 0.04 is roughly the time at which the plasma connects the two electrodes. To obtain these results,
a two-dimensional version of the (AP) scheme with a modified Lax–Friedrichs solver has been used. Until the
plasma connects the two electrodes at time t = 0.04, the gap is divided into a quasineutral plasma region and
an electron beam region, like in the one-dimensional case. We remark that the electron beam has a fork shape,
as it seems that the privileged location for electron emission lies on the sides of the plasma/beam interface. At
the connection time t = 0.04, the electron beam does not exist anymore but the plasma density close to the
anode is larger on the sides of the plasma bubble. These observations are confirmed by Fig. 21 where longi-
tudinal and transversal sections of the density are represented.

In Fig. 19, we represent the ion and electron velocities at times t = 0.005, t = 0.02 and t = 0.04. During the
expansion phase, the injected ions move towards the axis of symmetry of the device. For the electron, we
remark an inversion of the velocity slightly upstream the boundary of the plasma. Inside the plasma, the
x-component of the electron velocity is slightly negative which shows that the electrons move upstream.
Downstream the plasma, in the electron beam part, the x-component of the electron velocity is of course posi-
tive and large. These observations are confirmed by the sectional views in Fig. 22.



Fig. 18. Plasma expansion between two plane electrodes with � = 10�4, k = 10�4 and x = 106. Ion density (left) and electron density
(right) in log-scale at different times given by a two-dimensional (AP) scheme with the modified Lax–Friedrichs solver.
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In Figs 20 and 23, we represent the electric potential at times t = 0.005, t = 0.02 and t = 0.04. During
the expansion phase, we can distinguish three different regions. The first region is a cathode sheath located
close to the cathode, where an important potential fall occurs. This phenomenon has been observed in 1D
results and is due to the existence of a boundary layer of width equal to a few Debye lengths (see e.g.
[15,20]). In particular, we notice oscillations of the potential near the cathode which do not disappear when
time goes on. These oscillations, which have also been observed in one-dimensional simulations, are
reduced when the mesh size is smaller. They are due to the fact that the mesh size is too large to correctly
resolve this boundary layer.



Fig. 19. Plasma expansion between two plane electrodes with � = 10�4, k = 10�4 and x = 106. Ion velocity (left) and electron velocity
(right) at different times by a two-dimensional (AP) scheme with the modified Lax–Friedrichs solver. Vector fields and field intensity are
represented.
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The second region is the plasma region inside which the potential is quite flat in the x direction and where
we can observe negative barriers in the y direction during the expansion phase. The function of these barriers
is to maintain the electrons inside the plasma and to prevent their leakage through the lateral boundaries of
the plasma (see transversal sections in Fig. 23). By contrast, the lateral potential barriers become positive for
times greater than the connection time. However, the physical relevance of these results after the connection
time is questionable since no external circuit is taken into account. After the connection time, the plasma
makes a highly conducting bridge between the two electrodes and the electric current consequently reaches



Fig. 20. Plasma expansion between two plane electrodes with � = 10�4, k = 10�4 and x = 106. Electric potential at different times given by
a two-dimensional (AP) scheme with the modified Lax–Friedrichs solver.
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very large values. In practice, the external circuit which produces the potential bias will react to this large cur-
rent by reducing the bias. It is also likely that the plasma source is connected to the plasma and will stop deliv-
ering the plasma if the applied bias drops. In particular, if the plasma source is an ionization sheath,
the electric field at the cathode may fall below the threshold for ionization in which case the plasma source
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extinguishes. In the present state, none of these phenomena has been taken into account. So, after the connec-
tion time, the dynamics is so intense that the physical relevance of the numerical results is questionable.

Finally, the third region concerns the expansion phase and corresponds to the beam zone where the poten-
tial grows from the plasma potential to the anode potential, as should be expected.

5. Conclusion

In this paper, we proposed an asymptotic preserving scheme in the quasineutral limit for the two-fluid
Euler–Poisson system. This scheme has a comparable cost to that of an explicit discretization. The stability
of the scheme in the quasineutral limit has been confirmed by numerical simulations in three different config-
urations. The first test-case is the perturbation of a uniform steady state in one space dimension. The other two
test-cases concern the expansion of a plasma between two electrodes respectively in one and two space dimen-
sions. We perform these simulation results with the modified Lax–Friedrichs solver in spite of its well-known
diffusive behavior because the implementation of the asymptotic preserving strategy is easier in this case. But
extensions to other solvers are being studied. In this paper, we have shown some preliminary results in the
perturbation test-case for a Riemann solver based scheme (the polynomial scheme) and for the Lax–Wendroff
scheme.
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Following this idea, several works are in progress. First, we note that the scheme is still constrained by the
CFL condition of the Euler systems. This constraint can be penalizing especially for electrons which have a
very small mass. With the same methodology it is possible to bypass this limitation. In the same way, this idea
can be applied to low Mach number limit of the compressible Euler equations. Finally extensions to other sys-
tems are under study. The application to the full Euler system including energy equations is straightforward.
Finally, extensions to Drift-Diffusion models and to the Euler–Maxwell system have been designed and are
currently under numerical development.
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